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Abstract. We construct the classical Poisson structures andr-matrices for some finite-
dimensional integrable Hamiltonian systems obtained by constraining the flows of soliton
equations in a certain way. This approach allows us to produce new kinds of classical
(dynamical) Yang–Baxter structures. To illustrate this method we present ther-matrices
associated with the constrained flows of the Kaup–Newell, KdV, WKI and TG hierarchies,
all generated by a two-dimensional eigenvalue problem. Some of ther-matrices thus obtained
depend only on the spectral parameters, but others depend also on the dynamical variables. For
consistency they have to obey a classical Yang–Baxter-type equation, possibly with dynamical
extra terms.

1. Introduction

Integrable finite-dimensional systems that admit a classicalr-matrix depending only on the
spectral parameters have been studied extensively [1]. Recently it has been found that in
many cases the correspondingr-matrix depends also on the dynamical variables [2–7]. For
example, the celebrated Calogero–Moser system has been shown to possess a dynamical
r-matrix [6, 7]. In contrast to the well-studied case ofr-matrices depending only on spectral
parameters, the general theory of dynamicalr-matrices has not yet been established. New
examples are therefore needed in the search for the underlying structure, and the method
presented below seems to be quite useful for this purpose.

Let us first recall some basic results about ther-matrix approach to dynamical systems.
In [2] it was pointed out that the integrability of a dynamical system system (along with
many other useful properties) can be shown in a straightforward way (see section 2.3), if
the Poisson structure can be written in the following form:

{M(1)(α1)
⊗, M(2)(α2)} = [r(12)(α1, α2),M

(1)(α1)] − [r(21)(α2, α1),M
(2)(α2)]. (1)

Here the symbol{ . ⊗, . } has been introduced to handle Poisson brackets between matrices:
if M and N are matrices then{M ⊗, N}klij := {Mk

i ,N
l
j }, where on the right-hand side

the standard Poisson bracket is used. The square brackets on the right-hand side of (1)
stand for matrix commutators, and the superscripts refer to the vector spaces on which
the matrices act non-trivially:M(1)(α1) = M(α1) ⊗ 1 and M(2)(α2) = 1 ⊗ M(α2).
The equation itself is defined onV1 ⊗ V2, whereVi are identicald-dimensional vector

§ Permanent address.
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5242 Y Zeng and J Hietarinta

spaces (in this paperd = 2), thus all matrices ared2 × d2 dimensional. The spectral
parametersαi are associated with the vector spaces, so it is not necessary to write them out
explicitly. Note also that the usual permutation matrixP permutesonly the vector spaces:
r(21)(α1, α2) = P (12)r(12)(α1, α2)P

(12).
For consistency the Poisson bracket above has to obey the Jacobi identity and this in

turn implies an equation for ther-matrix. The Jacobi identity forM reads

{M(1) ⊗, {M(2) ⊗, M(3)}} + {M(2) ⊗, {M(3) ⊗, M(1)}}{M(3) ⊗, {M(1) ⊗, M(2)}} = 0. (2)

This equation is defined onV1 ⊗ V2 ⊗ V3 so, e.g.,M(2) = 1 ⊗M(α2)⊗ 1. If we allow for
the possibility that ther ’s depend on the dynamical variables, then direct application of (1)
to (2) leads to the requirement

[R(123),M(1)] + [R(231),M(2)] + [R(312),M(3)] = 0 (3)

where

R(ijk) := r(ijk) + {M(j) ⊗, r(ik)} − {M(k) ⊗, r(ij)} (4)

r(ijk) := [r(ij), r(ik)] + [r(ij), r(jk)] + [r(kj), r(ik)]. (5)

If the r(ij)’s do not depend on dynamical variables, then the Jacobi identity (3) should be
satisfied byr(ijk) = 0. This equation isalmost the classical Yang–Baxter equation, which
would be obtained if we hadr(kj) = −r(jk) (in which case the last term in (5) could be
written as [r(ik), r(jk)]). It turns out, however, that most of the examples presented here,
e.g, (54), do not have such a antisymmetry, thus the index order in (5) is crucial.

For the dynamicalr-matrices presented below one finds thatR(ijk) 6= 0. In [6] Sklyanin
observed that in such a case the Jacobi identity (3) can nevertheless be satisfied, if

R(ijk) = [X(ijk),M(j)] − [X(kij),M(k)] (6)

for some matrixX. We call this equation thedynamical, classical Yang–Baxter equation.
The special caseX(ijk) = X(kij) was used before in [5], but for the examples presented in
section 3 the Jacobi identity is satisfied due to (6), whereX(ijk) 6= X(kij).

Once the Lax representation of a dynamical system is given, constructing the classical
Poisson structure and the relatedr-matrix defined above is straightforward. Often ther-
matrix depends only on the spectral parameters, but, as mentioned above, in some cases it
turns out to depend on the dynamical variables as well. In the present paper, to illustrate the
above, we describe the classical Poisson structures and the related classical Yang–Baxter
equations of some dynamical systems obtained from constrained flows of soliton hierarchies.
In section 2 we give a brief introduction to the theory behind this by discussing, as an
example, the constrained flows for the Kaup–Newell hierarchy. Ther-matrices are then
presented in section 3, and we also discuss the way they satisfy the Jacobi identity. This
is first done for the constrained flows of Kaup–Newell hierarchy of section 2, and then for
the KdV, G Tu (TG) and the Wadati–Konno–Ichikawa (WKI) hierarchy. Our main results
are the dynamicalr-matrices connected with the last two cases. Since large families of
constrained flows can be reduced from various soliton hierarchies, the other purpose of this
paper is to emphasize that constrained flows may provide a useful way for searching many
types ofr-matrices.

2. Integrable constrained flows

To make the paper self contained we first briefly describe how finite-dimensional integrable
systems and their Lax representation can be constructed from constrained flows of soliton
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equations. We will use the Kaup–Newell (KN) hierarchy as an illustration; for further
details, see [8–11].

2.1. The hierarchy of Hamiltonian flows

Let us start by considering the Kaup–Newell eigenvalue problem [12]:(
ψ1

ψ2

)
x

= U(u, λ)

(
ψ1

ψ2

)
U(u, λ) =

( −λ2 λq

λr λ2

)
. (7)

(Here and in what follows we denoteut = (q, r).) First, we solve the adjoint representation
of (7) [13, 14]

Vx = [U,V ] ≡ UV − VU (8)

whereV has a Laurent series expansion

V (u, λ) =
∞∑
m=0

(
am(u) bm(u)

cm(u) −am(u)
)
λ−m. (9)

Equations (8) and (9) lead to the recursion relations

bm+2 = −qam+1 − 1
2bm,x

cm+2 = −ram+1 + 1
2cm,x

am = 1
2∂

−1
x (qcm−1,x + rbm−1,x)

(10)

and to the parity constraintsa2m+1 = b2m = c2m = 0. The first few terms are as follows:

a0 = 1, a2 = − 1
2qr, a4 = 3

8q
2r2 + 1

4(rqx − qrx), . . .

b1 = −q, b3 = 1
2(q

2r + qx), . . .

c1 = −r, c3 = 1
2(r

2q − rx), . . . .

(11)

The recursion relation (10) can also be expressed as(
c2m+1

b2m+1

)
= L

(
c2m−1

b2m−1

)
L = 1

2

(
∂x − r∂−1

x q∂x −r∂−1
x r∂x

−q∂−1
x q∂x −∂x − q∂−1

x r∂x

)
. (12)

Next let us consider a ‘truncation’ of the expression (9):

V (n)(u, λ) ≡ (λ2nV )+ ≡
n−1∑
m=0

(
a2mλ

2n−2m b2m+1λ
2n−2m−1

c2m+1λ
2n−2m−1 −a2mλ

2n−2m

)
(13)

and using it let us define thenth flow of the eigenfunction by(
ψ1

ψ2

)
tn

= V (n)(u, λ)

(
ψ1

ψ2

)
. (14)

Then the compatibility condition of (7) and (14) gives rise to a zero-curvature representation

Utn − V (n)x + [U,V (n)] = 0 n = 1, 2, . . . . (15)

Due to the construction ofV (n) in (13) only terms of lowest order inλ contribute, yielding
the KN hierarchy(

q

r

)
tn

= J

(
c2n−1

b2n−1

)
= J

δH2n−2

δu
J =

(
0 ∂x

∂x 0

)
(16)
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where

H2m = 1

2m
(4a2m+2 − rb2m+1 − qc2m+1) H0 = −qr. (17)

In the above construction all other steps are straightforward, except the fact that the flow
(16) can be written in terms of a HamiltonianH2n−2, and that the Hamiltonians so obtained
are in involution with respect to the ordinary infinite-dimensional Poisson bracket [14].
(Also in some cases one has to add a lowest order inλ correction term toV (n).) One
elegant method to derive this is by using certain trace identities [13].

2.2. The constrained flow

In order to construct a finite-dimensional integrable system we will takeN copies of (7)
with distinct λj ’s(

ψ1j

ψ2j

)
x

= U(u, λj )

(
ψ1j

ψ2j

)
j = 1, . . . , N (18)

and theseψ ’s will be the new dynamical variables (although sometimes there will be
others as well). The additional ingredient we need is a constraint that relatesu to theψ ’s.
Furthermore this constraint must be such that it preserves the integrability of the original
system, i.e. it must be invariant under the flows (16).

One suitable constraint is obtained as follows [8]. It is known [15] that for systems (18)
with Tr(U) = 0 we have (up to a constant factor)

δλ

δui
= 1

2
Tr

[(
ψ1ψ2 −ψ2

1

ψ2
2 −ψ1ψ2

)
∂U(u, λ)

∂ui

]
(19)

which in the present case implies

δλ

δu
= 1

2

(
λψ2

2

−λψ2
1

)
. (20)

It is easy to verify that

L

(
λψ2

2

−λψ2
1

)
= λ2

(
λψ2

2

−λψ2
1

)
. (21)

We then take as our constraint the restriction of the variational derivatives of conserved
quantitiesH2k0 (for any fixedk0) andλj [8, 10]:

δH2k0

δu
− β

N∑
j=1

δλj

δu
= 0 (22)

which in the present case implies(
c2k0+1

b2k0+1

)
− 1

2
β

( 〈392, 92〉
−〈391, 91〉

)
= 0. (23)

(The constantβ has been introduced for later convenience.) Hereafter we denote the inner
product inRN by 〈., .〉 and

91 = (ψ11, . . . , ψ1N)
T 92 = (ψ21, . . . , ψ2N)

T 3 = diag(λ1, . . . , λN). (24)
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It has been shown in [10] that (22) is invariant under all flows of (16). The system
consisting of (18) and (22) is called aconstrained flowand can be transformed into a finite-
dimensional integrable Hamiltonian system (FDIHS) by introducing the so-called Jacobi–
Ostrogradsky coordinates.

To deduce the Lax representation for the system (18) and (23) from the adjoint
representation (8), we have to find the expressions ofam, bm, cm under (18) and (23). Due
to (12), (21) and (23), we may define the higher order terms [10] by(

c̃2m+1

b̃2m+1

)
= 1

2
β

( 〈32m−2k0+192, 92〉
−〈32m−2k0+191, 91〉

)
m > k0 (25)

and according to (10) and (18)

ã2m = − 1

q

(
b̃2m+1 + 1

2
b̃2m−1,x

)
= 1

2
β〈32m−2k091, 92〉 m > k0. (26)

By using equations (10), (12), (18) and (23), a direct calculation gives then expressions for
the lower order termsa2m for m 6 k0 andb2m+1, c2m+1 for m < k0, which are denoted also
by ã2m, b̃2m+1, c̃2m+1, respectively.

The construction of̃am, b̃m, c̃m ensures that under (18) and (23)

Ṽ =
∞∑
m=0

(
ãm b̃m

c̃m −ãm

)
λ−m (27)

satisfies (8) as well. By direct calculation we find

Mk0 =
(
A(k0) B(k0)

C(k0) −A(k0)

)
≡ λ2k0Ṽ

A(k0) =
k0∑
m=0

ã2mλ
2k0−2m + 1

2
β

N∑
j=1

λ2
j ψ1jψ2j

λ2 − λ2
j

B(k0) =
k0−1∑
m=0

b̃2m+1λ
2k0−2m−1 − 1

2
β

N∑
j=1

λjλψ
2
1j

λ2 − λ2
j

C(k0) =
k0−1∑
m=0

c̃2m+1λ
2k0−2m−1 + 1

2
β

N∑
j=1

λjλψ
2
2j

λ2 − λ2
j

.

(28)

SinceṼ under (18) and (23) satisfies (8), theMk0 under (18) and (23) satisfies equation (8),
too, namely

Mk0,x = [U,Mk0]. (29)

Conversely, the construction ofMk0 guarantees that (29) is just the Lax representation for
the system (18) and (23). This can also be verified by direct calculation.

We first present three systems of (18) and (23) below.
(a) Whenk0 = 0, β = 1, (23) becomes

q = 1
2〈391, 91〉 r = − 1

2〈392, 92〉 (30)

and then (18) can be written in canonical Hamiltonian form

91x = −3291 + 1

2
〈391, 91〉392 = ∂H̃0

∂92

92x = −1

2
〈392, 92〉391 +3292 = −∂H̃0

∂91

(31)
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H̃0 = −〈3291, 92〉 + 1
4〈391, 91〉〈392, 92〉. (32)

TheA(0), B(0), C(0) for M0 in (28) read

A(0)(λ) = 1 + 1

2

N∑
j=1

λ2
j ψ1jψ2j

λ2 − λ2
j

B(0)(λ) = −1

2
λ

N∑
j=1

λjψ
2
1j

λ2 − λ2
j

C(0)(λ) = 1

2
λ

N∑
j=1

λjψ
2
2j

λ2 − λ2
j

.

(33)

(b) Whenk0 = 1, β = 1
2, then (23) gives rise to the constraint

qx = −q2r − 1
2〈391, 91〉 rx = r2q − 1

2〈392, 92〉 (34)

and by introducing

q1 = q p1 = r (35)

the system (18) and (34) can be written in canonical Hamiltonian form

91x = ∂H̃1

∂92
q1x = ∂H̃1

∂p1
92x = −∂H̃1

∂91
p1x = −∂H̃1

∂q1
(36)

H̃1 = − 1
2q

2
1p

2
1 − 〈3291, 92〉 + 1

2q1〈392, 92〉 − 1
2p1〈391, 91〉. (37)

TheA(1), B(1), C(1) for M1 are of the form

A(1)(λ) = λ2 − 1

2
q1p1 + 1

4

N∑
j=1

λ2
j ψ1jψ2j

λ2 − λ2
j

B(1)(λ) = −q1λ− 1

4
λ

N∑
j=1

λjψ
2
1j

λ2 − λ2
j

C(1)(λ) = −p1λ+ 1

4
λ

N∑
j=1

λjψ
2
2j

λ2 − λ2
j

.

(38)

(c) Whenk0 = 2, β = 1, (23) leads to the constraint
1
2rxx − 3

2qrrx + 3
4q

2r3 = −〈392, 92〉
1
2qxx + 3

2qrqx + 3
4q

3r2 = 〈391, 91〉
(39)

and by introducing the following Jacobi–Ostrogradsky coordinates:

q1 = q q2 = r p1 = − 3
16r

2q + 1
4rx p2 = 3

16q
2r + 1

4qx (40)

the system (18) and (39) can be written in canonical Hamiltonian form

91x = ∂H̃2

∂92
qix = ∂H̃2

∂pi
92x = −∂H̃2

∂91
pix = −∂H̃2

∂qi
(41)

where

H̃2 = 4p1p2 − 3
4q

2
1q2p1 + 3

4q
2
2q1p2 − 1

64q
3
1q

3
2 − 〈3291, 92〉 + 1

2q1〈392, 92〉

− 1
2q2〈391, 91〉 (42)
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and theA(2), B(2), C(2) for M2 are of the form

A(2)(λ) = λ4 − 1

2
q1q2λ

2 + q2p2 − q1p1 + 1

2

N∑
j=1

λ2
j ψ1jψ2j

λ2 − λ2
j

B(2)(λ) = −q1λ
3 +

(
1

8
q2q

2
1 + 2p2

)
λ− 1

2
λ

N∑
j=1

λjψ
2
1j

λ2 − λ2
j

C(2)(λ) = −q2λ
3 +

(
1

8
q1q

2
2 − 2p1

)
λ+ 1

2
λ

N∑
j=1

λjψ
2
2j

λ2 − λ2
j

.

(43)

2.3. Integrability

DenoteM0,M1, orM2 by M. It will be shown in the next section thatM satisfies (1) with
r(12) given by (54). An immediate consequence of (1) is that{(
M(1)(λ)

)2 ⊗,
(
M(2)(µ)

)2
}

= [r12(λ, µ),M
(1)(λ)] − [r21(µ, λ),M

(2)(µ)] (44)

where [2]

rij (λ, µ) =
1∑
k=0

1∑
l=0

(
M(1)(λ)

)1−k (
M(2)(µ)

)1−l
r(ij)(λ, µ)

(
M(1)(λ)

)k (
M(2)(µ)

)l
. (45)

Then it follows immediately from (44) that

4{TrM2(λ),TrM2(µ)} = Tr
{(
M(1)(λ)

)2
,
(
M(2)(µ)

)2
}

= 0 (46)

which ensures the involution property of the integrals of motion obtained from expanding
M2 in powers ofλ.

For the system (31) one obtains

TrM2(λ) = (A(0)(λ))2 + B(0)(λ)C(0)(λ) = 1 +
N∑
j=1

F
(j)

0

λ2 − λ2
j

(47)

where

F
(j)

0 = λ2
j ψ1jψ2j − 1

4
〈391, 91〉λjψ2

2j + 1

4

∑
k 6=j

λjλk

λ2
k − λ2

j

(λjψ1jψ2k − λkψ1kψ2j )
2

j = 1, . . . , N. (48)

and we havẽH0 = −∑N
i=1F

(j)

0 .
For the system (36) we find

TrM2(λ) = (A(1)(λ))2 + B(1)(λ)C(1)(λ) = λ4 − 2H̃1 + 1

2

N∑
j=1

F
(j)

1

λ2 − λ2
j

(49)

where

F
(j)

1 = λ4
j ψ1jψ2j − 1

2
q1λ

3
j ψ

2
2j + 1

2
p1λ

3
j ψ

2
1j − 1

8
〈391, 91〉λjψ2

2j

+1

8

∑
k 6=j

λjλk

λ2
k − λ2

j

(λjψ1jψ2k − λkψ1kψ2j )
2 j = 1, . . . , N. (50)
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For the system (41) one gets

TrM2(λ) = (A(2)(λ))2 + B(2)(λ)C(2)(λ) = λ8 − H̃2λ
2 + F

(0)
2 +

N∑
j=1

F
(j)

2

λ2 − λ2
j

(51)

where

F
(0)
2 = 〈3491, 92〉 − 1

2q1q2〈3291, 92〉 − 1
2q1〈3392, 92〉

+ 1
2q2〈3391, 91〉 + (p2q2 − q1p1)

2 + (p2 + 1
16q

2
1q2)〈392, 92〉

+(p1 − 1
16q

2
2q1)〈391, 91〉

F
(j)

2 =
(
λ4
j − 1

2
q1q2λ

2
j + p2q2 − q1p1

)
λ2
j ψ1jψ2j +

(
p2 − 1

2
q1λ

2
j + 1

16
q2

1q2

)
λ3
j ψ

2
2j

+
(
p1 + 1

2
q2λ

2
j − 1

16
q2

2q1

)
λ3
j ψ

2
1j − 1

4
〈391, 91〉λjψ2

2j

+1

4

∑
k 6=j

λjλk

λ2
k − λ2

j

(λjψ1jψ2k − λkψ1kψ2j )
2 j = 1, . . . , N.

(52)

Then equation (46) and, for example, (51) guarantees that the functionally independent
integrals of motionH̃2 and F (j), j = 0, 1, . . . , N, are in involution. This shows the
integrability of (31), (36) and (41) in the Liouville sense [16].

3. The (non)dynamicalr-matrices

3.1. The Kaup–Newell system

We start the presentation of our results by first displaying some non-dynamicalr-matrices,
obtained by the method discussed above.

The classical Poisson structure associated with the Lax representation discussed in the
previous section, equations (31), (36) and (41) is the following. With respect to the standard
Poisson bracket, it is found by direct calculation that bothA(0), B(0), C(0) andA(1), B(1), C(1)

as well asA(2), B(2), C(2) satisfy the following relations:

{A(λ),A(µ)} = {B(λ), B(µ)} = {C(λ), C(µ)} = 0

{A(λ), B(µ)} = βµ

µ2 − λ2
(µB(µ)− λB(λ))

{A(λ), C(µ)} = βµ

µ2 − λ2
(λC(λ)− µC(µ))

{B(λ), C(µ)} = 2βλµ

µ2 − λ2
(A(µ)− A(λ)).

(53)

For the elementary Poisson brackets (53) one finds that (1) holds with

r(ij) = βαiαj

α2
j − α2

i

P (ij) − βαi

αj + αi
S(ij) S(ij) = 1

2
(σ

(i)

0 ⊗ σ
(j)

0 + σ
(i)

3 ⊗ σ
(j)

3 ). (54)

(Here theσi ’s are the standard Pauli matrices, and the permutation matrixP is given by
P (ij) = 1

2

∑3
n=0 σ

(i)
n ⊗ σ

(j)
n .) In fact, equations (1), (54) hold for all FDIHS obtained from

the constrained flows (18) and (23). The classical Poisson structure (1), (54) contains all
necessary information of the present system, and is more rich than the Lax representation [1].
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The r-matrix in (54) is of the ‘twisted two-pole’ structure in the nomenclature of [17]:
if we define

R(λ,µ) := −βµ
{

µS

λ2 − µ2
+ λ(P − S)

λ2 − µ2

}
(55)

thenr(ij) = R(αi, αj )− R(αi,∞).

3.2. The KdV hierarchy

For the KdV hierarchy [18], the eigenvalue problem is of the form(
ψ1

ψ2

)
x

= U(q, λ)

(
ψ1

ψ2

)
U(q, λ) =

(
0 1

−λ− q 0

)
(56)

the second constrained flow with constraintq = 1
8〈91, 91〉 reads [8]

91x = 92 = ∂H̃

∂92
92x = −1

8
〈91, 91〉91 −391 = − ∂H̃

∂91
(57)

with the Hamiltonian

H̃ = 1
2〈391, 91〉 + 1

2〈92, 92〉 + 1
32〈91, 91〉2. (58)

The Lax representation for (57) is given by (29)

M(λ) ≡
(
A(λ) B(λ)

C(λ) −A(λ)
)

=
(

0 1

−λ− 1
16〈91, 91〉 0

)
+ 1

16

N∑
j=1

1

λ− λj

(
ψ1jψ2j −ψ2

1j

ψ2
2j −ψ1jψ2j

)
. (59)

and we have

{A(λ),A(µ)} = {B(λ), B(µ)} = 0

{C(λ), C(µ)} = 1
4(A(λ)− A(µ))

{A(λ), B(µ)} = 1

8(µ− λ)
(B(µ)− B(λ))

{A(λ), C(µ)} = 1

8(µ− λ)
(C(λ)− C(µ))− 1

8
B(λ)

{B(λ), C(µ)} = 1

4(µ− λ)
(A(µ)− A(λ)).

(60)

Then equations (60) give rise to the classical Poisson structure (1) for the system (57) (in
fact for all constrained flows of KdV hierarchy) with ther-matrix given by

r(ij)(αi, αj ) = 1

8(αj − αi)
P (ij) + 1

8
S(ij) S(ij) = σ

(i)
− ⊗ σ

(j)
− (61)

and thisr satisfies the classical Yang–Baxter equations of the formr(ijk) = 0 (5). (In this
caser(ij) 6= −r(ji) and the index order in (5) is important.) (Thisr-matrix is related to the
one presented in [19] (equation (27)) by a singular limit.)
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3.3. The TG hierarchy

The above examples have anr-matrix that depended only on the spectral parameters. We
will now present two constrained flows that lead to a dynamicalr-matrix.

Let us first consider the TG hierarchy associated with the following eigenvalue
problem [20]:(
ψ1

ψ2

)
x

= U(u, λ)

(
ψ1

ψ2

)
U(u, λ) =

( −λ+ 1
2q r

r λ− 1
2q

)
. (62)

By using the method in [8, 10], the first constrained flow, with constraintq = (〈92, 92〉 −
〈91, 91〉)/G, r = 2G is found as follows:

91x = −391 + 1

2G
(〈92, 92〉 − 〈91, 91〉)91 + 2G92 = ∂H̃

∂92

92x = 2G91 +392 − 1

2G
(〈92, 92〉 − 〈91, 91〉)92 = − ∂H̃

∂91

(63)

where

H̃ = −〈391, 92〉 +G(〈92, 92〉 − 〈91, 91〉) G =
√

〈91, 92〉. (64)

Using the method of [9], we obtain the Lax representation for (63) given by (29) with(
A(λ) B(λ)

C(λ) −A(λ)
)

=
( − 1

2λ G

G 1
2λ

)
+

N∑
j=1

1

λ− λj

(
ψ1jψ2j −ψ2

1j

ψ2
2j −ψ1jψ2j

)
. (65)

One gets

{A(λ),A(µ)} = 0

{B(λ), B(µ)} = 1

G
(B(λ)− B(µ))

{C(λ), C(µ)} = − 1

G
[C(λ)− C(µ)]

{A(λ), B(µ)} = 2

µ− λ
(B(µ)− B(λ))

{A(λ), C(µ)} = 2

µ− λ
(C(λ)− C(µ))

{B(λ), C(µ)} = 4

µ− λ
(A(µ)− A(λ))+ 1

G
(B(λ)+ C(µ))

(66)

which gives rise to the classical Poisson structure (1) for the system (63) with the dynamical
r-matrix given by

r(ij)(αi, αj ) = 2

αj − αi
P (ij) + 1

2G
S(ij) S(ij) = σ

(i)

3 ⊗ σ
(j)

1 . (67)

This satisfies the classical, dynamical Yang–Baxter equations (4), (6) with

X(ijk) = − 1

2G3
σ
(i)

3 ⊗ σ
(j)

3 ⊗ σ
(k)

1 . (68)

In this case the dynamical variables appear only throughG.
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3.4. The Wadati–Konno–Ichikawa hierarchy

Finally consider the Wadati–Konno–Ichikawa (WKI) hierarchy associated with the following
eigenvalue problem [21]:(

ψ1

ψ2

)
x

= U(u, λ)

(
ψ1

ψ2

)
U(u, λ) =

(
λ λq

λr −λ
)
. (69)

By using the method in [8–10], we obtain the first constrained flow, with the constraint
q = −〈391, 91〉/G, r = 〈392, 92〉/G as follows:

91x = 391 − 1

G
〈391, 91〉392 = ∂H̃

∂92

92x = 1

G
〈392, 92〉391 −392 = − ∂H̃

∂91

(70)

where

H̃ = 〈391, 92〉 −G G =
√

1 + 〈391, 91〉〈392, 92〉. (71)

The Lax representation for (70) is given by (29) with(
A(λ) B(λ)

C(λ) −A(λ)
)

= 1

2

(
G 0

0 −G
)

+ 1

2

N∑
j=1

λj

λ− λj

(
λjψ1jψ2j −λψ2

1j

λψ2
2j −λjψ1jψ2j

)
(72)

and we have

{B(λ), B(µ)} = {C(λ), C(µ)} = 0

{A(λ),A(µ)} = 1

2G
〈392, 92〉(λB(λ)− µB(µ))+ 1

2G
〈391, 91〉(λC(λ)− µC(µ))

{A(λ), B(µ)} = λµ

λ− µ
B(λ)− µ2

λ− µ
B(µ)+ 1

G
〈391, 91〉µA(µ)

{A(λ), C(µ)} = λµ

µ− λ
C(λ)− µ2

µ− λ
C(µ)+ 1

G
〈392, 92〉µA(µ)

{B(λ), C(µ)} = 2λµ

λ− µ
(A(λ)− A(µ)).

(73)

This leads to the classical Poisson structure (1) for (70) with ther-matrix given by

r(ij)(αi, αj ) = αiαj

αj − αi
P (ij) − αiS

(ij) + αi

2G
E(ij)

S(ij) = 1
2(σ

(i)

0 ⊗ σ
(j)

0 + σ
(i)

3 ⊗ σ
(j)

3 ) E(ij) = F (i) ⊗ σ
(j)

3

F (i) = 〈391, 91〉σ (i)+ − 〈392, 92〉σ (i)− .

(74)

This r-matrix satisfies the dynamical classical Yang–Baxter equation (4), (6), with

X(ijk) = −αiαj
2G3

[F (i) ⊗ F (j) ⊗ σ
(k)

3 + 2σ (i)+ ⊗ σ
(j)
− ⊗ σ

(k)

3 + 2σ (i)− ⊗ σ
(j)
+ ⊗ σ

(k)

3 ]. (75)

Now the dynamical variables appear through both〈391, 91〉 and〈392, 92〉 as well asG.
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4. Conclusions

In this paper we have discussed the classical Poisson structure and the related (dynamical)
r-matrix for some finite-dimensional integrable Hamiltonian systems. These integrable
systems were derived by constraining the integrable flow of an evolution equation in a
particular way [8–10, 22]. This seems to be a fruitful way of producing dynamical systems
with interesting types ofr-matrices.

The possibility of adynamicalr-matrices has been known for some time now, but no
general theory for such systems has been developed so far. It is therefore important to
derive examples using different methods, in order to find what the essential features are.
For example, one may ask in what way the Jacobi identities are satisfied. The examples
presented in section 3 belong to the class that satisfy them only through the most general
form proposed so far, equation (6). The method presented in this paper can probably be
used to generate still other types of interesting examples.
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