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Abstract. We construct the classical Poisson structures andatrices for some finite-
dimensional integrable Hamiltonian systems obtained by constraining the flows of soliton
equations in a certain way. This approach allows us to produce new kinds of classical
(dynamical) Yang—Baxter structures. To illustrate this method we presenk-thatrices
associated with the constrained flows of the Kaup—Newell, KdV, WKI and TG hierarchies,
all generated by a two-dimensional eigenvalue problem. Some of-thatrices thus obtained
depend only on the spectral parameters, but others depend also on the dynamical variables. For
consistency they have to obey a classical Yang—Baxter-type equation, possibly with dynamical
extra terms.

1. Introduction

Integrable finite-dimensional systems that admit a classicaatrix depending only on the
spectral parameters have been studied extensively [1]. Recently it has been found that in
many cases the correspondingnatrix depends also on the dynamical variables [2—7]. For
example, the celebrated Calogero—Moser system has been shown to possess a dynamical
r-matrix [6, 7]. In contrast to the well-studied caserafatrices depending only on spectral
parameters, the general theory of dynamicahatrices has not yet been established. New
examples are therefore needed in the search for the underlying structure, and the method
presented below seems to be quite useful for this purpose.

Let us first recall some basic results about thmatrix approach to dynamical systems.
In [2] it was pointed out that the integrability of a dynamical system system (along with
many other useful properties) can be shown in a straightforward way (see section 2.3), if
the Poisson structure can be written in the following form:

{(MP (1) @ MP ()} = [r*? (a1, a2), MP (a1)] — [r® (a2, a1), MP (ap)]. (1)

Here the symbo{. ® .} has been introduced to handle Poisson brackets between matrices:

if M and N are matrices theiM © N};i := {M], N/}, where on the right-hand side

the standard Poisson bracket is used. The square brackets on the right-hand side of (1)
stand for matrix commutators, and the superscripts refer to the vector spaces on which
the matrices act non-trivially: MY (ay) = M(e1) ® 1 and M@ (o) = 1 ® M(ay).

The equation itself is defined ol ® V., where V; are identicald-dimensional vector
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spaces (in this papet = 2), thus all matrices ard? x 42 dimensional. The spectral
parameters; are associated with the vector spaces, so it is not necessary to write them out
explicitly. Note also that the usual permutation matfixpermutesonly the vector spaces:
r@ (g, ap) = P12rA(qq, ap) P12,

For consistency the Poisson bracket above has to obey the Jacobi identity and this in
turn implies an equation for thematrix. The Jacobi identity foM reads

(MY 2 (MP @ MY+ (MP 2 (MO 2 MOPM @ (MD 2 MP)) =0, (2)

This equation is defined oW, ® Vo ® V3 s0, €..M? =1® M(az) ® 1. If we allow for
the possibility that the’s depend on the dynamical variables, then direct application of (1)
to (2) leads to the requirement

[R(123)’ M(l)] + [R(231)’ M(Z)] + [R(312)’ M(3)] =0 (3)
where

RUR = p R L () @ 0y _ pg® © 16Dy (4)

PR [pD O] 4 [pD) | pUR] 4 [pED 07, (5)

If the r@/)’s do not depend on dynamical variables, then the Jacobi identity (3) should be
satisfied byr@/® = 0. This equation isalmostthe classical Yang—Baxter equation, which
would be obtained if we had®’ = —rU® (in which case the last term in (5) could be
written as [, rURT), It turns out, however, that most of the examples presented here,
e.g, (54), do not have such a antisymmetry, thus the index order in (5) is crucial.

For the dynamicat-matrices presented below one finds tR&t* = 0. In [6] Sklyanin
observed that in such a case the Jacobi identity (3) can nevertheless be satisfied, if

R — [X(ijk)’ M(j)] _ [X(kij)’ M(k)] (6)
for some matrixX. We call this equation thdynamical, classical Yang—Baxter equation.
The special cas& /¥ = x*i/) was used before in [5], but for the examples presented in
section 3 the Jacobi identity is satisfied due to (6), whefé) = x*i/),

Once the Lax representation of a dynamical system is given, constructing the classical
Poisson structure and the relatednatrix defined above is straightforward. Often the
matrix depends only on the spectral parameters, but, as mentioned above, in some cases it
turns out to depend on the dynamical variables as well. In the present paper, to illustrate the
above, we describe the classical Poisson structures and the related classical Yang—Baxter
equations of some dynamical systems obtained from constrained flows of soliton hierarchies.
In section 2 we give a brief introduction to the theory behind this by discussing, as an
example, the constrained flows for the Kaup—Newell hierarchy. /Fheatrices are then
presented in section 3, and we also discuss the way they satisfy the Jacobi identity. This
is first done for the constrained flows of Kaup—Newell hierarchy of section 2, and then for
the KdV, G Tu (TG) and the Wadati—Konno—Ichikawa (WKI) hierarchy. Our main results
are the dynamicat-matrices connected with the last two cases. Since large families of
constrained flows can be reduced from various soliton hierarchies, the other purpose of this
paper is to emphasize that constrained flows may provide a useful way for searching many
types ofr-matrices.

2. Integrable constrained flows

To make the paper self contained we first briefly describe how finite-dimensional integrable
systems and their Lax representation can be constructed from constrained flows of soliton
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equations. We will use the Kaup—Newell (KN) hierarchy as an illustration; for further
details, see [8-11].
2.1. The hierarchy of Hamiltonian flows

Let us start by considering the Kaup—Newell eigenvalue problem [12]:

Y1\ V1 (2 Mg
( V2 ) _U(“)( V2 ) U“"“‘( o2 ) @

(Here and in what follows we denoté = (¢, r).) First, we solve the adjoint representation
of (7) [13, 14]

V,=[U,V]=UV - VU (8)
whereV has a Laurent series expansion
Vi, 1) = i( ) bm(4) )x"’. ©)
=\ ) —anu)
Equations (8) and (9) lead to the recursion relations
bui2 = —qami1 — 3bm.x
Cm42 = —Fami1 + %cm,x (10)

aym = %8;l(qcm—l,x + rbm—l,x)

and to the parity constraints,, ;1 = b2, = c2, = 0. The first few terms are as follows:

ag =1, az=—%qr, as = §q2r2+%(rqx—qrx),.--
by = —q, by = 3(g°r + qo). ... (11)
c1= —r, c::,:%(rzq—rx),... .
The recursion relation (10) can also be expressed as
(e )mr(2) R )
bomy1 bom-1 2\ —qd;'qd.  —d —qd;'ro;

Next let us consider a ‘truncation’ of the expression (9):

" o B n—1 azmAZn—Zm b2n1+1)L2;l—2;;1—1
VO, 1) = (V) = n;( B g o ) (13)
and using it let us define theth flow of the eigenfunction by
( V1 > = V””(u,k)( V1 ) (14)
V2 /. V2
Then the compatibility condition of (7) and (14) gives rise to a zero-curvature representation
U, —-Vv® +[U,v™] =0 n=12.... (15)

Due to the construction of ™ in (13) only terms of lowest order il contribute, yielding
the KN hierarchy

i 0 Hy, 0 o0,
r I bzn_]_ Su 3)6 0
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where

1
Hy, = %(4‘1%4—2 —rbony1 — gcans1) Ho = —qr. (17)

In the above construction all other steps are straightforward, except the fact that the flow
(16) can be written in terms of a Hamiltonidf, _», and that the Hamiltonians so obtained
are in involution with respect to the ordinary infinite-dimensional Poisson bracket [14].
(Also in some cases one has to add a lowest order @orrection term tov™.) One
elegant method to derive this is by using certain trace identities [13].

2.2. The constrained flow

In order to construct a finite-dimensional integrable system we will tslkeopies of (7)
with distinctA;’s

(‘/’” ) =U(u,,\j)< 31’ ) j=1...,N (18)

Va; 2j

and thesey’s will be the new dynamical variables (although sometimes there will be
others as well). The additional ingredient we need is a constraint that relatethe ¢'s.
Furthermore this constraint must be such that it preserves the integrability of the original
system, i.e. it must be invariant under the flows (16).

One suitable constraint is obtained as follows [8]. It is known [15] that for systems (18)
with Tr(U) = 0 we have (up to a constant factor)

_ a2
& 1, (w“/f Vi >8U(”’“ (19)
8ul~ 2 wz —Iﬂll/fz 8u,~
which in the present case implies
o _1( 23 0
su 2\ —ay? )

It is easy to verify that

MY (M)
(e )= 50e) e

We then take as our constraint the restriction of the variational derivatives of conserved
quantitiesHy, (for any fixedko) and; [8, 10]:

8 Hoy, ANFIY
_ =0 22
Su ﬂ; Su (22)

which in the present case implies

1 AV, W
( Cokot1 )—ﬁ( (AW, W3) ):0. (23)
baky i1 2 —(AVy, V1)
(The constang has been introduced for later convenience.) Hereafter we denote the inner

product inR" by (., .) and

Wy = (Y11, .., Yan)| Wy = (Y1, - .., Yaw) ' A =diag(ry, ..., Ay). (24)
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It has been shown in [10] that (22) is invariant under all flows of (16). The system
consisting of (18) and (22) is calledcanstrained flonand can be transformed into a finite-
dimensional integrable Hamiltonian system (FDIHS) by introducing the so-called Jacobi—
Ostrogradsky coordinates.

To deduce the Lax representation for the system (18) and (23) from the adjoint
representation (8), we have to find the expressions,ob,,, ¢,, under (18) and (23). Due
to (12), (21) and (23), we may define the higher order terms [10] by

~ 2m—2ko+1
( Cont1 ) _ 1/3( (A Wy, W) ) m> ko (25)

bonir ) 20\ —(AZ"TEOMI wy)
and according to (10) and (18)
. 1/- 1. 1 _
dom = ~ <b2m+1 + 2b2m—1,x> = 5,3(1\2'" oy, Wy) m > ko. (26)

By using equations (10), (12), (18) and (23), a direct calculation gives then expressions for
the lower order termsy,, for m < kg andba,, 11, ca,+1 for m < ko, which are denoted also

bY 2. bam+1. Cons1, reSpectively.
The construction ofi,,, b,,, ¢,, ensures that under (18) and (23)

5 > am Em
V= AT 27
satisfies (8) as well. By direct calculation we find

Ao pko) e
M, = ( ctho  _ pto ) =27V

Lo Ay, 1/f2
A(ko) — Z &Zm)\'zko + ﬂ Z j J ]
m=0

Ay (28)
1 1i
Bk — b pZko—2m=1 _ J
L ! ;‘A i
m= J= J
ko—1 1 N )\)\wZ
ko) _ N = Ug—2m—1 MV
Clo —m§_oczm+1x RSO
=l J_

SinceV under (18) and (23) satisfies (8), th, under (18) and (23) satisfies equation (8),
too, namely

Miyx = [U, My,]. (29)

Conversely, the construction @f,, guarantees that (29) is just the Lax representation for
the system (18) and (23). This can also be verified by direct calculation.

We first present three systems of (18) and (23) below.
(@) Whenkg =0, 8 = 1, (23) becomes

g = 3(AW1, ¥y) r=—3(AWy, ¥y) (30)
and then (18) can be written in canonical Hamiltonian form
1
Wy, = —A%W; + 2<A\y1, W) AW, =
(31)
1
Wy, = —E(A‘l’z, W) AW; + A%, = mrT



5246 Y Zeng and J Hietarinta

Ho = —(A*W1, Wp) + (AW, W1) (AW, Wy).
The A@, BO O for My in (28) read

A(O) (}L) 1 4+ = Z wl} wzj

N
B(O)()\.) _% Aj wlj
j= 1

(0) al II/I2/
cO) = Z e
1

I

(b) Whenko =1, 8 =
4x = —q°r — 3(AW, W) re =r2q — J(AV,, Wy)
and by introducing

, then (23) gives rise to the constraint

q1 =4 pP1=r
the system (18) and (34) can be written in canonical Hamiltonian form
W — 8ﬁ1 _ 8ﬁ1 W, — aHl _ 3H1
= 9, qu = o 2% = 8\111 Pix = 3611

Hy = —3¢2p% — (A2, Wy) + Lq1(AW,, Wy) — Lpy(AWy, Wy).
The AD, BD, D for M, are of the form

1 )»Wllﬂz
Dy = 32 I74
ADG) =2 —fq1p1+42

22 _ 42
2 Jj=1 A )‘/
1 N A '1//2~
(1) _ = J V1
BY() = —q1a 412‘%2_%2
j=1 J
D 1 al jw22j
COM) =—ph+ 33) 5
j=1 J
(c) Whenkg = 2, 8 = 1, (23) leads to the constraint

Tree = 3qrre + 3473 = — (AW, W)

Saux + 3qrq. + 36°r% = (AW, W)
and by introducing the following Jacobi—Ostrogradsky coordinates:

G=q  qa=r  p1=—17q+ s pa= 54T+ 14x
the system (18) and (39) can be written in canonical Hamiltonian form
vy, = LITIZ qix = aﬁz 2x = _LI% Pix = _aﬁz
aW, api 0wy ‘ 0g;
where

Hy =4p1ps — 3q7q2p1 + 3050102 — 539505 — (A*W1, W2) + g1 (AW, W)

—3q2(AWy, W)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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and theA@, B@ €@ for M, are of the form

1 Ao
AP () = 2% — Z g1 - /
(W) = 2" = 241920* + qap2 = q1p1 + 5 Z Sz
1 1 & Mg
@3y — .13 s 2 _ - AR
BY () = —q12° + <8qzq1 + 2pz> b= A 25252 (43)
1 J‘pz
COM) = —g23 + <8qlq2 - 2p1> PR A Z ;2
J

2.3. Integrability

DenoteMy, M1, or M, by M. It will be shown in the next section thaf satisfies (1) with
r12 given by (54). An immediate consequence of (1) is that

{(MD60)" & (MP)*} = 7126, 10, MP ] = 20, 2), MP 0] (44)
where [2]

1 1
Fyw =Y 3 (MO0) T (MPG0) T P e (MO @) (MP ). (@)

k=0 =0
Then it follows immediately from (44) that
ATr M2, TrM2()) = Tr | (M ), (M@ )*} =0 (46)

which ensures the involution property of the integrals of motion obtained from expanding
M? in powers ofA.
For the system (31) one obtains

N )
F
TEMEG) = (AOG) + BOMCOG) =1+ 5, (47)
J= J
where
» 1 1 A
Fo = 1fynvay = J (AL Wh03; + 737 ’;2 (jajva — az))?
k#j k
j=1,...,N. (48)
and we havefly = — YV, F{/.
For the system (36) we find
1 N F(/)
Tr M2 = (AP W)2+ BYW)CP () = A% — 2H; +5 xz (49)
where
() 4 1 5 1 3 1 2
Fy7 =My — S w3+ S P Wi — 8(A‘IJ1, VA5,
A ,
82 2@ Y1V — M¥ude)?  j=1....N. (50)

k#j
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For the system (41) one gets
F(j)

TrM2(0) = (AP W))? + BP()CP0) =28 — Hpp? + FO + Z (51)

j=1 M- )‘J2
where
FyY = (AW, W) — 3q1g2(A2W1, Wp) — 2q1(A%W, W))
+3q2{ AW, W) + (p2gz2 — q1p1)° + (P2 + 154542) (A2, Wp)
+(p1 — 350591 (A1, V1)

F = )\—}q 22+ - WY 1 x?+i2 A3y2,
2 192 P2q92 —qip1 1j¥2; + 2611, 16611612 i¥2j (52)

(AW, ‘Vl))»jlﬁzzj

1, 1 L, 1
+ Pr#?]zkj 166126]1 Wy - 2

- Z xzj & Zo Vi — Mbuvz))? j=1...N.

k#/
Then equation (46) and, for example, (51) guarantees that the functionally independent
integrals of motionH, and F, j = 0,1,..., N, are in involution. This shows the

integrability of (31), (36) and (41) in the Liouville sense [16].

3. The (non)dynamicalr-matrices

3.1. The Kaup—Newell system

We start the presentation of our results by first displaying some non-dynamigcatrices,
obtained by the method discussed above.

The classical Poisson structure associated with the Lax representation discussed in the
previous section, equations (31), (36) and (41) is the following. With respect to the standard
Poisson bracket, it is found by direct calculation that beth, B©, c© andA®, BD c®
as well asA®, B@, €@ satisfy the following relations:

{A), AW} ={B(X), B(w)} ={C(H), C(w)} =0

{A(V), B(w)} = %(MB(M) — AB(2))
(53)
(AG). C(w) = %oco) — 1C(w)
28\
{B(A), C(w)} = /3 M — 5 (A(n) — AQ)).
For the elementary Poisson brackets (53) one finds that (1) holds with
pin = P pap P iy g (am ® oy +0y ®a’). (54)
of —af o + o

(Here theo;’s are the standard Pauli matrices, and the permutation matiix given by

P =133 50 ®0,") In fact, equations (1), (54) hold for all FDIHS obtained from

the constrained flows (18) and (23). The classical Poisson structure (1), (54) contains all
necessary information of the present system, and is more rich than the Lax representation [1].



Classical Poisson structures and r-matrices 5249

The r-matrix in (54) is of the ‘twisted two-pole’ structure in the nhomenclature of [17]:
if we define

(55)

©S AP — S)}

R\, pn)=—
( /‘L) ﬂlu“{kz_'uz )\,Z—MZ

thenr@ = R(a;, o)) — R(a;, 00).

3.2. The KdV hierarchy
For the KdV hierarchy [18], the eigenvalue problem is of the form

/21 21 0 1)
=U ,)\, U ,)\.= 56
(1//2>x “ )<w2> @4 (—A—q 0 (56)

the second constrained flow with constrajnt %(\111, V1) reads [8]

Wy, =W —8ﬁ Wy, = 1(\1/ U)W — AWy = 0H (57)
1x — 2_8\1—’2 2x — 8 1, ¥1 1 1= 8‘111
with the Hamiltonian
H= AW, W) + 2(Wa, Wp) + 45 (Wy, Wy)2 (58)

The Lax representation for (57) is given by (29)

MO = ( A(L) B )
Ch) —AQ)
0 1 1N 1 Y1 ¥2; _1/’121' )
— + = . 59
( _)\_1&6(11;17 ¥) 0 ) 16;A—Aj< 1/f22j — V1V, (%)

and we have
{A), A(w)} ={B(), B(n)} =0
{C), C(w)} = %(A(k) — A(w))

1

A(A), B =——(B — B(»

{A(R), B(w)} 8(M—k)( (n) — B(X) )
1 1

{A), C(w)} = 8- 1) (CH) = C(w) - éB()»)
1

B, C =— (A —A(}V)).

{B(2), C(w)} 4(M—?»)( (n) — AR))

Then equations (60) give rise to the classical Poisson structure (1) for the system (57) (in
fact for all constrained flows of KdV hierarchy) with thrematrix given by

i, 1 . 1 .. i, ; .
r(a;, ) = 8 —a) P4 os@ s =0l g0l (61)
Jj i

and thisr satisfies the classical Yang—Baxter equations of the fdffi = 0 (5). (In this
caser/) £ —rUD and the index order in (5) is important.) (Thismatrix is related to the
one presented in [19] (equation (27)) by a singular limit.)
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3.3. The TG hierarchy

The above examples have amatrix that depended only on the spectral parameters. We
will now present two constrained flows that lead to a dynamiealatrix.

Let us first consider the TG hierarchy associated with the following eigenvalue
problem [20]:

(1 Y1 —A+3q r )
= Uu, » Uu, )) = . 62
(wz>x (v )< wz) w2 ( roa-lq (62)

By using the method in [8, 10], the first constrained flow, with constraiat ((V,, V,) —
(W1, W1))/G, r = 2G is found as follows:

1 9H
Wi = =AY+ (W, o) — (W, V1)W1 + 26V = —
2G A2}

~ (63)
Wy, = 260y + AWy — (W, W) — (W, Uy by = — 1
2% = 1 2= 55 (Y2, V2 A

where
H=—(AW1, W) + G((Wp, W) — (U1, W1)) G =/(U1,¥). (64)
Using the method of [9], we obtain the Lax representation for (63) given by (29) with
AL B( ~Ir G ul W~V
(o ) =06 w7 ) @
One gets
{AQ), A(w)} =0

1
{B(W), B(w)} = B —B(w)

1
{CQ), C(w)} = —E[C()») —C(w]

2 (66)
{A(V), B(w)} = m(B(u) — B())

2
{A), C(w)} = ——(C) — C(w)
nw—A

4 1
{BW), C(w)} = ——(A(n) — A) + - (B(A) + C(w))
w—Ar G

which gives rise to the classical Poisson structure (1) for the system (63) with the dynamical
r-matrix given by
) 2 I ) (i) () )
”](Oli,aj)=7P]+ES] S =05 @0y, (67)

Olj i
This satisfies the classical, dynamical Yang—Baxter equations (4), (6) with
. 1 .
X0 = _TGgUeE) ® o5’ ®oy". (68)
In this case the dynamical variables appear only throtigh
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3.4. The Wadati—Konno-Ichikawa hierarchy

Finally consider the Wadati—Konno—Ichikawa (WKI) hierarchy associated with the following
eigenvalue problem [21]:

Y1\ V1 (M
() mven(i) wen=(5, 5) @

By using the method in [8-10], we obtain the first constrained flow, with the constraint
g =—(AWq, W1)/G, r = (AW,, W) /G as follows:

7 AV 1(A\Il U )AW 731?
1x — 1— 4 1, ¥1 2 =
G ow
2 (70)
Wy, = 1(AII/ W) AW — AW, = H
Zx—E 2, ¥2 1 2 = 8\111

where

~

H = (AU, W) — G G =1+ (AW, W) (AW,, Wy). (71)

The Lax representation for (70) is given by (29) with

(A()\) B(A) )_1<G 0 >+1XN: A (Anlfljwzj - )
ch —-Ax ) 2\ 0 -G 20— ) S =AYV

j=1

(72)
and we have
{BV), B(w)} ={CW),C(w)}=0

1 1
{AQ), A(w)} = E(A\I’L W2)AB(A) — uB(w)) + E(A\Ijlv V1) (AC () — nC(w)

2

7 1
B+ G AL WAy 73)

(12

m—A

A
(AG). B(w) = ﬁm) -

A 1
(A, Cw} = —Eco) - C() + = (AW, W) A ()
w—A G

2n
{B(V), C(w)} = m(z‘\(k) — A(w)).

This leads to the classical Poisson structure (1) for (70) with-thmatrix given by

.. o0 .. .. o; ..
r(l/)(ai’ o) = YV plp O!iS(”) 4+ L EUD
’ o — o 2G
s =16l @ o + 08 ® o) EW = FO @ g (74)

FO = (AW, W)o? — (AW, Wa)o .

This r-matrix satisfies the dynamical classical Yang—Baxter equation (4), (6), with
ij il j (®) ) @) ®) ) o (®)
XWh = —Z—Gé[F“ @FV®0y +20 @0 @0y’ +20" @0 @05 ]. (75)

Now the dynamical variables appear through bathl1, W;) and (AW,, W) as well asG.
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4. Conclusions

In this paper we have discussed the classical Poisson structure and the related (dynamical)
r-matrix for some finite-dimensional integrable Hamiltonian systems. These integrable
systems were derived by constraining the integrable flow of an evolution equation in a
particular way [8-10, 22]. This seems to be a fruitful way of producing dynamical systems
with interesting types of-matrices.

The possibility of adynamicalr-matrices has been known for some time now, but no
general theory for such systems has been developed so far. It is therefore important to
derive examples using different methods, in order to find what the essential features are.
For example, one may ask in what way the Jacobi identities are satisfied. The examples
presented in section 3 belong to the class that satisfy them only through the most general
form proposed so far, equation (6). The method presented in this paper can probably be
used to generate still other types of interesting examples.
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